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1 Introduction

This document describes the Chainlink off-chain reporting protocol, a new, more scalable, version of the pro-
tocol driving Chainlink’s data feeds, realizing the vision for off-chain aggregation originally outlined in the
Chainlink whitepaper [EIN17].

There are n oracles (or nodes) that monitor an off-chain data stream, typically an API reporting a price
feed like ETH-USD. Periodically, the oracles jointly run the protocols outlined in this document (off-chain)
to sign a report containing observations from many oracles. Once a report is produced successfully, one or
multiple transmitters sampled from the oracle set transmit the report to a smart contract C running on a “main”
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blockchain, which is considered to be Ethereum here, although no specific features of Ethereum are used
by the off-chain reporting protocol. The contract validates the report, pays each oracle that contributed an
observation to the report, and exposes the median of the reported values to consuming contracts on-chain. The
first transmitter to successfully transmit the report to C' is paid extra to make up for the Ethereum transaction
fees she incurred during transmission of the report. Subsequent transmitters of the same report do not receive
payment.

2 Design goals
At a high level, the design should achieve the following goals.

Resilience: The protocol should be resilient to different kinds of failures. Oracles may become Byzantine out
of malice or due to buggy code. The chosen security model limits only the number of faulty oracles, not
the types of faults.

Simplicity: We will implement and maintain this design, and wish to ship quickly to meet growing market
demand, while supporting continual future improvements. We thus follow the KISS principle (‘“keep it
simple, stupid”) and try to make choices that lend themselves to straightforward implementation, reduc-
ing the likelihood of defects in the final system.

Low transaction fees: Communication between the oracles and computation performed by the oracles hap-
pens off-chain and is therefore (almost) free. In contrast, communication with C' requires Ethereum
transactions which carry hefty fees; for example, assuming a gas price of 30 GWei and an ETH price of
USD 200 as of 2020, a transaction requiring 100k gas costs around 60 cents. In times of network con-
gestion (e.g. caused by volatile markets), these fees could climb tenfold to USD 6 per transaction! We
thus aim to minimize transaction fees, even if this results in protocol with higher off-chain computation
and networking requirements.

Low latency: We want to minimize the time between the initiation of the signing protocol and the inclusion of
the resulting transaction on the blockchain by C'. Most end users of the data posted to C' are DeFi trading
platforms — they need fresh data. The performance of the data gathering protocol should only be limited
by the network transmission latency (the network capacity seems of low relevance because the amount of
transmitted data is small). Assuming real-world internet latencies, the protocol should produce a report
within a few seconds. Typically, this time will be dominated by the time it takes to complete transmission
of the resulting report to C. For example, in the case of Ethereum, we have to conservatively assume that
inclusion of the transmission transaction may take on the order of minutes. However, on next-generation
blockchains, inclusion may take less than second.

3 Model

Oracles. The system consists of n oracles P = {p1, ..., pn}, which are also called nodes. The oracles may
send messages to each other over a network and are identified by their network endpoints, i.e., a certificate on
their cryptographic key material, which allows them to authenticate to each other.

The set of oracles is determined by an oracle smart contract C' as introduced later. If it becomes necessary
to change the oracle set that performs reporting, the oracle list in the smart contract is changed by its owner and
the off-chain reporting protocol is restarted with the new set of oracles.

Each oracle p; makes time-varying observations of a value such as a price. This is modeled as a value they
can read at any time.

The protocol and its security analysis do not rely on any structure or distribution over these observations.
The protocol only ensures that the on-chain reports include the real observations of sufficiently many correct
parties. In most applications the idea is that these observations will be noisy versions of a real-world value, but
this isn’t necessary for the analysis here.



Failures. Any f < n/3 oracles may exhibit Byzantine faults, which means that they may behave arbitrarily
and as if controlled by an imaginary adversary. All non-faulty oracles are called honest or correct. (Conse-
quently, for n < 3, all oracles most be correct for the protocol to function correctly.)

For stating formal security guarantees, these faults may occur adaptively, where the adversary can choose
the faulty nodes on the fly. Once faulty, a node remains faulty for the purpose of the model for the entire
duration of the protocol. It is expected that the protocol operates usually with n = 3f + 1 since this gives
optimal resilience.

In principle, the failure assumption covers also network failures and crashes, which may or may not be
adversarially introduced. This assumption also means that no more than f nodes may become isolated from
the network or crash. This is a weakness of the model, in that it does not cover, for instance, software errors
which take down the whole network at once due to a malformed message. (In practice, we mitigate such
errors through client diversity, for instance, by falling back to the previous FluxMonitor protocol that has been
powering Chainlink’s data feeds so far.)

To make our design more practical, however, we additionally permit benign faults in the following sense:
A correct node may crash and become unresponsive for some time or it may become unreachable from some
or all other correct nodes (as if during a network partition). When the node resumes operation after recovering,
it restores some state from local persistent storage and will participate in the protocol again correctly. A benign
fault is transient and must never influence the safety of the protocol.

With this refined model, which is only used informally, we want to achieve the following. If f oracles are
Byzantine-faulty and c oracles are benign-faulty with f < n/3 but f + ¢ > n/3 at any point in time during the
protocol execution, then: (a) the protocol may lose liveness, but (b) always satisfies the safety properties.

For supporting this refined model and thereby increasing the resilience against crashes, some local state is
always maintained on persistent storage. We will explicitly mention the variables for which this is the case.

Oracle smart contract and reports. The goal of the protocol is to repeatedly produce reports, which are
recorded by the smart contract C' on the Ethereum blockchain. A report is signed by sufficiently many oracles
and consists of a sorted list with recent observations from a plurality of oracles. The report is submitted to C'.
The code of C, in turn, verifies the signatures, checks that the list of observations is sorted, records which
oracles contributed, and stores the median of the observations as the reported value on the blockchain. The
contributing oracles receive a payout.

Using the median among more than 2 f observations ensures that the reported value is plausible in the sense
that faulty oracles cannot move it outside the range of observations submitted by correct oracles.

Cryptographic primitives. The protocol uses public-key digital signatures and pseudo-random functions
(PRF). The standard EADSA and ECDSA schemes are used for digital signatures. A PRF may be implemented
by HMAC-SHA256 or by Keccak256 (simply prepending the key to the message).

Timing model. We align the timing and network model with the partially synchronous model [DLS88]| but
make some simplifying choices.

To defend against (D)DoS attacks by outside entities, one may connect the oracles over a private network.
This still leaves the system vulnerable to application-layer resource-exhaustion attacks by malicious oracles,
e.g., exploiting a memory leak or flooding the network with irrelevant messages. Such issues are addressed by
the implementation as much as possible.

Formally, partial synchrony means that the network is asynchronous and the clocks of the nodes are not
synchronized up to some point called global stabilization time (GST). After GST, the network behaves syn-
chronously, the clocks behave synchronously, and all messages between correct nodes are delivered within
some bounded delay A, and this remains so for the remainder of the protocol execution. In practice, a protocol
may alternate multiple times between asynchronous and synchronous periods. Liveness is only ensured for
periods of synchrony.

As a pragmatic choice and in contrast to the formal model, the maximal communication delay A is a
constant configured into the protocol. A discussion of the timeout values used in the implementation is given
in Section[6l



Network assumptions. The oracles may send point-to-point messages to each other over an unreliable net-
work. All connections are authenticated and encrypted, that is, each oracle can authenticate every other oracle
based on the list of oracles as determined by C' on the blockchain.

Messages sent between correct oracles are not necessarily delivered in the same order in which they were
sent.

It is possible for a network partition to temporarily isolate a large number of nodes. Such partitions can
model node crashes and eventual reboots, as well. However, since nodes keep retrying messages, all messages
among correct nodes get through eventually, once any impeding network asynchrony passes.

4 Overview

The overall goal is to periodically send oracle reports to the contract C', which runs on Ethereum. The Chainlink
reporting protocol is structured into three algorithms, called pacemaker, report generation, and transmission.

Pacemaker. The pacemaker protocol drives the report generation process, which is structured into epochs. In
each epoch, there is a designated /eader that drives a report generation protocol for the epoch, similar to related
protocols for consensus like PBFT [CL02]. However, the protocol described here does not ensure consensus
and relies on C for resolving ambiguities that may occur due to transitions across epochs.

The pacemaker protocol runs continuously and periodically initiates a new epoch and a corresponding
instance of the report generation protocol. Every report generation instance has a designated leader. The
pacemaker protocol emits a startepoch event that triggers the leader to start the report generation protocol.

The pacemaker may also abort the currently running report generation instance if it does not observe enough
progress. To this end, the pacemaker protocol receives progress events from the current report generation
instance. Every oracle runs a timer with timeout duration Apogress that serves to watch the epoch leader’s
performance; every progress event resets that timer. When the timer expires, the oracle concludes that the
current leader was not performing correctly and has not produced a valid report that may be sent to C. The
oracle then moves to initiate a new epoch with another report generation protocol instance and a different leader.
Neither the pacemaker protocol nor the report generation protocol actually sends out the report to C': the report
generation protocol hands this task over to the transmission protocol.

The pacemaker protocol observes the progress only via the report generation instance through the progress
events. Thus, Apogress Need not depend on the worst-case transaction confirmation time on the blockchain.

The pacemaker protocol also responds to changeleader events originating from a report generation instance.
This event indicates that the instance and its leader have run for the maximum permitted duration and that its
epoch ends. When this occurs, the pacemaker also aborts the current report generation instance and starts the
next epoch, with a new report-generation instance and possibly a different leader.

Report generation. Every report generation protocol instance corresponds to an epoch and has a unique
identifier e and a leader node py. A new epoch should be started whenever a sufficient number of oracles have
determined that a new leader is needed. The report generation protocol of an epoch is structured into rounds.
In each round, the protocol gathers observations and, if conditions for going forward are met, it generates a
signed oracle report, which it hands over to the transmission protocol for transmission to C.

The rounds are controlled by the leader itself and by a timeout Aqyng. This timeout, which is only triggered
by the leader, controls the frequency of rounds and of gathering observations. The value of Ayunq must be lower
than Aprogress and larger than the network latency required to complete a full iteration of the report generation
protocol during periods of synchrony, plus a safety margin.

Once a sufficient number of observations are collected together into the more compact form of a report, the
report is ready for being sent to C' through the transmission protocol. The report contains enough signatures
of the oracles for C to verify that the report is correct and valid. For preventing unnecessary reports, however,
the leader may only generate such a report, and the oracles only participate in producing the report, under the
following condition: either their view of the data-stream value has changed by more than a fraction o compared
to the most recent value reported by C' or more than an interval A¢ time has passed since that report.



Transmission. The transmission protocol encapsulates the steps performed locally by each oracle for sending
reports to C. Unlike the above two algorithms, the transmission protocol does not involve any communication
among the oracles. The transmission protocol delays oracles pseudo-randomly to ensure a staged sending
process, preventing that too many copies of the same report are sent off simultaneously to C' in fault-free cases.
This saves cost because C' must process all reports it receives, also when it does not include a report in the
blockchain.

5 Protocol description

We give a semi-formal description of the protocols using an event-based notation, as used in the standard
literature [[CGR11, Chap. 1]. A protocol is written in terms of a list of upon-handlers, which may respond to
events or to conditions on the protocol’s internal state. Handlers are executed atomically, i.e., in a serializable
and mutually exclusive way, per protocol instance and per node such that no two handler executions of the same
instance interleave.

A protocol instance (i.e., an instance of Algorithm|[I] Algorithms[2}-H|or Algorithm 5|below) communicates
with other instances running on the same oracle through events, which are triggered by

invoke event example-event(argl, arg?2) .
For each triggered event, a handler of the form
upon event example-event(argl, arg2) do

is executed once. Events between two protocol instances executing on the same node are handled in the same

order in which they were triggered (i.e., FIFO order). The execution is otherwise asynchronous, which means

that the invoking protocol may only obtain output from an invoked protocol instance via further events.
Protocol instances communicate with peer instances running on different oracles by sending messages as

send message [EXAMPLE-MESSAGE, argl, arg2] to p; .

Messages also trigger events when they are received by the protocol on a destination node.
We make frequent use of broadcasts where an instance sends a message to all instances including itself:

send message [EXAMPLE-MESSAGE, argl, arg2] to all p; € P

Every correct node continuously resends every message until the destination node acknowledges their re-
ceipt; however, a correct node does not further retransmit any message once its view of the current epoch (in
Algorithm (1)) or round (in Algorithm has been incremented from the one to which a message pertains.
Every receiving node acknowledges every message it receives, even if a message is a duplicate.

We make use of timers throughout the protocol description. Timers are created in a stopped state. After
being started, a timer times out once and then stops. A timer can be (re)started arbitrarily many times. Restarting
an already running timer is the same as stopping it and then starting it afresh. Stopping a timer is idempotent.

5.1 Contract

The contract C' is managed by an owner with administrative powers. The owner can set future payment amounts
and add or remove oracles. When the owner modifies the oracle set, an Ethereum log event is emitted by
the contract informing the oracles about the new configuration of the off-chain network. How the owner is
instantiated is outside the scope of this document. In practice, trust-minimization considerations would suggest
using a contract that limits the power of malicious actors, for example, by requiring multiple signatures by
independent parties or enforcing a waiting period before changes can be enacted.

Contract C' records the reports, each of which contains a logical timestamp and multiple observation val-
ues. When C' receives a transmission with report R with a more recent logical timestamp than the maximum C'
has seen, C' updates its record with the median of all observation values in the report and exposes this to con-
suming contracts. Transmissions with equal or smaller logical timestamp are ignored. Logical timestamps are
implemented by epoch-round tuples (e, ), denoting the round r and the epoch and report-generation protocol
instance e, in which the report was produced.



Upon successful transmission of R, contract C' also pays each oracle that provided an observation to R and
pays the oracle that submitted R to compensate it for its transaction fee expenditure.
We provide an Ethereum implementation of C', written in Solidity, in Of fchainAggregator.sol.

Benchmarks. On the aforementioned Ethereum contract, we measure a transaction cost of ca. 291000 gas
for 31 oracles for the first transmission of a given epoch and round. Any subsequent transmission with the same
epoch-round pair is ignored (technically, it aborts using Ethereum’s revert) and costs ca. 42000 gas.

5.2 Pacemaker

The pacemaker protocol in Algorithm [T]on p. [7] governs the choice of a series of leaders associated to epochs
numbered in succession 0,1,2,.... For each epoch, one instance of the report generation protocol in Algo-
rithm@]—@ is created and executed. If this does not produce a valid report after Aprogress Units of time, the oracle
initiates a switch to the next epoch, and the corresponding next leader.

Description. Algorithm [I] is similar to the leader-detection algorithm specified by Cachin et al. [CGR11],
Module 2.10, p. 61] and implemented by Algorithm 2.10 (p. 62) there. Many of the arguments made for the
properties of that protocol carry over directly to this context. The algorithm is extended by means to tolerate
lossy links, such that messages sent between correct oracles do not need to be buffered. Similar methods have
recently been introduced in the literature [NK20; BCG20].

Every oracle p; maintains a local variable e, which denotes the epoch in which p; operates. Furthermore, a
variable ¢ denotes the leader oracle py of the current epoch, derived from e as ¢ < Ieader(e). The variable ne
tracks the highest epoch number the oracle has sent in a NEWEPOCH message. These variables are maintained
on persistent storage.

The node broadcasts a NEWEPOCH message containing ne every Aesena sSeconds. This increases the proba-
bility that relevant NEWEPOCH messages get through, even if a message is dropped at some point. It also helps
for integrating crashed oracles back into the protocol after they have recovered.

In Algorithm([I] the NEWEPOCH message plays the same role as the COMPLAINT message in Alg. 2.10 [CGR11]].
Here, incorrect behavior by the current leader py is determined by oracle p; if p; has not observed a valid final
report by timeout Apogress-

If an oracle receives more than f messages of the form [NEWEPOCH, €', each one containing some €’ > e,
it infers that at least one correct node wishes to progress to some epoch higher than e. The node chooses this
epoch € as the (f + 1)-highest entry of newepoch and sends out its own [NEWEPOCH, €] message. Since it is
assumed that at most f nodes are Byzantine, receiving a message from more than f others implies that at least
one correct node has earlier sent a [NEWEPOCH, €] message.

This protocol differs from Alg. 2.10 [CGR11]] in that € is an arbitrary future epoch, not necessarily the
next epoch from the receiving oracle’s perspective. This allows the oracle to catch up if it misses messages
pertaining to an entire epoch or more. Recall that correct nodes may also exhibit benign faults and be offline
for some time. If f is close to n/3, this doesn’t matter too much, since the protocol will not actually advance
unless approximately 2/3 of the nodes positively respond with NEWEPOCH messages. For smaller f, though,
arbitrary delays could lead to multiple distinct perspectives on the current epoch.

The node continuously records the highest epoch numbers received from all others through NEWEPOCH
messages. If a node observes more than 2 f nodes wish to change to an epoch greater than e, the node aborts
the currently running report generation protocol instance, and switches to epoch €, where € is the (2f + 1)-
highest entry of newepoch. It also initializes the report generation protocol instance for €. Because more
than 2f indicated epoch e or greater, the node infers that more than f correct nodes wish to switch to a later
epoch. This, in turn, implies that every correct node will receive more than f NEWEPOCH messages as well,
since a correct node will send those message to all others. Hence, all correct nodes will eventually transmit a
NEWEPOCH message containing epoch at least €, according to the NEWEPOCH amplification rule, and initialize
the report generation protocol for epoch e.

Crashes and recoveries. At any time, some number ¢ of nodes may exhibit benign faults and have crashed;
they eventually will recover and resume operations (otherwise, they count as Byzantine). We reason about



Algorithm 1 Pacemaker protocol structured into epochs (oracle p;).

state
(e, ) < (0, leader(0)): current epoch and leader for p;
ne < e: highest epoch that p; has initialized or for that it has sent a NEWEPOCH message
newepoch < [0]™: highest epoch received from p; in a NEWEPOCH message
timer Trogress With timeout duration Aprogress // leader must produce reports with this frequency, or be removed
timer Tregeng With timeout duration A egeng /I controls resending of NEWEPOCH messages

upon initialization do
initialize instance (e, £) of report generation // see report generation protocol in Alg.
start timer Tprogress

upon event progress do // the current leader is progressing with the report generation protocol (see Algorithm [2)
restart timer Tprogress

function send-newepoch(e’)
send message [NEWEPOCH, ¢/] to all p; € P
ne < ¢
restart timer 7 jesend

upon event timeout from Tiegeng do // resend NEWEPOCH message every Aresend seconds, in case network drops it
send-newepoch (ne)

upon event timeout from Tprogress OF €vent changeleader do // leader is too slow, or tenure is over
stop timer 7 rogress
send-newepoch(max{e + 1,ne})

upon receiving a message [NEWEPOCH, €] from p; do
newepoch|j| < max(e’, newepochl[j))

upon |{p; € P | newepoch[j] > ne}| > f do /I NEWEPOCH amplification rule
€+ max{e’“{pj € P | newepoch[j] > ¢'}| > f}
send-newepoch(max(ne, €))

upon |{pj € P | newepoch[j] > e}| > 2f do // agreement rule
€ <+ max{e'“{pj € P | newepoch[j] > e'}| > Zf}
abort instance (e, ) of report generation
(e,0) < (&, leader(e))
ne < max{ne,e}

initialize instance (e, ¢) of report generation // see report generation protocol in Alg. [2H4]
restart timer Tjrogress
if i = / then

invoke event startepoch(e, ) /1 see report generation leader protocol in AlgH]




recovery from crashes solely in the context of Algorithm|[I] A crashed oracle will not rejoin Algorithm 2H4]
In the following, assume that there are no simultaneous Byzantine faults and consider these scenarios:

¢ < f: When no more than f oracles have crashed, the protocol maintains liveness and progresses normally
(based on the assumption that there are no further Byzantine faults). When an oracle crashes in some
epoch e, it misses all messages sent until it recovers. Upon recovery, it will eventually receive more
than f NEWEPOCH messages containing an epoch larger than ne (recall that ne is restored from persistent
storage upon recovery). This oracle will then rejoin the protocol by sending a NEWEPOCH message itself,
denoting an epoch larger than ne.

¢ > f : During the time when more than f oracles have crashed, the protocol loses liveness. The protocol will
resume operations successfully once n — f oracles are operating and more than f among them send a
NEWEPOCH message with an epoch value of at least some e after recovery. This ensures that, eventually,
more than f oracles send thier own NEWEPOCH message with an epoch of at least e and, in turn, all
correct oracles announce epoch values €/ > e. This implies that the correct oracles eventually start epoch
at least e.

In the rest of this paragraph, we argue why the pacemaker protocol is able to resume after the crash and
subsequent recovery of any number of correct nodes.

Observe first that the protocol ensures that for every correct oracle, the variable ne increases monotonically
and, likewise, no entry in newepoch ever decreases. This follows directly from the protocol, e.g., for the
assignments to ne that occur in the agreement rule, inside send-newepoch, from the way this function is called,
and from the handling of received NEWEPOCH messages.

Furthermore, notice that ne > e holds as well from the assignment to ne in the agreement rule and from
the preceding reasoning. And since e is determined from the entries of newepoch that never decrease, also e
increases monotonically.

Consider now a point in time when all correct nodes have recovered, there are Byzantine-faulty nodes, but
the network timing has stabilized (i.e., a moment after GST). A stable situation also means that when a report
generation protocol instance with a correct leader has been initialized by all correct oracles, this produces
reports (and progress events) faster than Apogress; hence, no correct oracle times out on Tjrogress and initializes
a further epoch like this.

In this situation, correct oracles that have recovered may have missed arbitrarily many messages. Hence,
their locally highest epochs (stored in ne) may vary widely.

However, since all correct nodes resume the periodic transmission of NEWEPOCH messages, every correct
node will soon receive n — f NEWEPOCH messages and determine an epoch number € in the NEWEPOCH
amplification rule that is reported by more than f nodes. Notice that &€ > ne for the local variable ne of at least
one correct node p;. However, it may be that e is larger than the highest epoch for which any correct node has
initialized the report generation protocol.

Let ps be some node with the (f + 1)-largest value of the ne variables among the n — f correct nodes,
and let e denote this epoch number. According to the protocol, f + 1 or more correct oracles will repeatedly
send NEWEPOCH messages containing an epoch value of at least e;. Since these messages are sent by correct
oracles, every correct oracle will eventually have received at least f + 1 such NEWEPOCH messages and send a
NEWEPOCH message with parameter e, or higher as well.

This implies that every correct oracle eventually stores n — f > 2 f entries in newepoch that are at least e.
Hence, every correct oracle has either already initialized report generation protocol instance e or will progress
to epoch e, and initialize the report generation protocol instance e.

It remains to show that no correct oracle has yet aborted the report generation protocol instance e;. This
follows easily, considering the monotonically increasing variables e and ne of each correct oracle: In order to
progress to some epoch €’ > e, a correct oracle would need more than 2 f entries in newepoch containing e’ or
a higher value. Hence, accounting for f values reported by faulty oracles, more than f correct oracles would
have sent NEWEPOCH messages containing e’ or a larger value. However, the number of correct nodes whose
ne variable may exceed eg and that might actually have sent NEWEPOCH messages with parameter larger than
es is at most f, according to the definition of es. This is a contradiction and shows that such an ¢’ does not
exist.



The leader function. The function leader : N — {1,...,n} maps epochs to leaders. It is important that it is
balanced in the sense that for any long interval of epochs, every oracle becomes leader approximately equally
often. It must be deterministic and computable by every oracle.

The standard implementation is to set

leader(e) = (emod n) + 1.

The ordering of the oracles is determined by the list in C'. If this order may be influenced by the oracles (for
example, when ordered by their identifying public keys), this may provide an opportunity for a coalition of
faulty oracles to arrange themselves consecutively, which could lead to long delays between correct operations
of the protocol.

One may use a pseudo-random function for leader to avoid this risk. This has the advantage that the leader
sequence remains unpredictable to any observer outside the set of oracles, ensuring that an external adversary
cannot predict and attack the leader of a particular future epoch. This can be implemented with a cryptographic
pseudo-random function F, : {0,1}* — {0, 1}*, where = is a secret key (called the seed) and that maps an
arbitrary-length input string to a fixed-length, k-bit output string that looks random to anyone who does not
know the secret key. Interpreting k-bit strings as integers, one may then set

leader(e) = (F,(e) mod n) + 1.

The seed is specified by the operator at startup of the protocol; it must be the same for all oracles.
The leader function may be adjusted so that no oracle is selected as leader in two consecutive epochs by
changing the modulus to n — 1 and renumbering the oracles to exclude the current leader.

5.3 Report generation

Algorithm 2H4] on pp. [10] and [I2] respectively, concern the current leader’s coordination of the current round’s
oracle observations and signatures, assuming the leader is correct. All its messages are tagged implicitly by the
epoch identifier (e, ¢) and explicitly contain the round number (). Notice this is one logical algorithm with
two entirely separate parts, where Algorithm [2H3| contains code executed by all oracles including the leader p,
and Algorithm [ contains code executed only by py. This means the rules on atomic invocation of clauses hold
across the whole report generation algorithm.

All oracles start executing the protocol upon being initialized. The leader additionally receives a startepoch
event, which actually triggers the message flow. The report generation protocol is only live when the leader is
correct and may halt otherwise. The protocol executes a number of rounds and produces one report per round.
After a predetermined number of rounds, it halts and signals to the pacemaker that it is time to kick off the next
report generation protocol instance.

A new round is started every A;oung units of time. The leader then sends first an OBSERVE-REQ message
to all oracles. Oracles receiving an OBSERVE-REQ for round 7 from the leader move to round 7, collect a
new observation, sign it along with replay-prevention metadata, and send it back to the leader in an OBSERVE
message.

Once the leader has 2f + 1 valid OBSERVE messages for round r, the leader waits out a grace period of
duration Agp,ee so that delayed observations may also be included in the report. (Oracles are paid for their
observations, and we don’t want to withhold payment from oracles that are slightly delayed, e.g. because the
API they’re querying is slow. This also provides an incentive for oracles to participate in a speedy manner.)
When the grace period expires, the leader collates the observations, sorts them by observation value, and sends
them to all oracles in a REPORT-REQ message. Recipients check whether the report should be assembled (as
explained later), extract a compressed report containing just the observations and oracle identities, and send
back a signature on that. With this signature, an oracle validates the report.

Once the leader has obtained more than f reports validated by signatures, it compresses them and produces
an attested report for transmission to C'. Taking more than f signatures ensures that the attested report has been
validated by at least one correct oracle. Notice that the attested report is not unique, even when the leader is
correct, since any f + 1 correctly signed observations form a valid attested report. Before the attested report is
transmitted to C' by Algorithm 5] the report generation protocol disseminates it to all oracles.



Algorithm 2 Report generation follower protocol instance (e, ¢) (executed by every oracle p;)

state
r¢ <= 0: current round number within the epoch
sentecho <— L : echoed attested report which has been sent for this round
sentreport <— FALSE: indicates if REPORT message has been sent for this round
completedround < FALSE: indicates if current round is finished
receivedecho < [FALSE|™: jth element true iff received FINAL-ECHO message with valid attested report from p;

upon receiving message [OBSERVE-REQ, 7’| from py s.t. 7y < 1’ < rpax + 1 do

rp 1’ // oracle moves to next round as follower
if 7 > rmax then // py has exhausted its maximal number of rounds
invoke event changeleader /1 see report pacemaker protocol in Alg. [T]
exit // oracle halts this report generation instance

sentecho <— 1 ; sentreport <— FALSE; completedround <— FALSE
receivedecho < [FALSE]"™

v < current observation of the value oracle reports on (e.g. price)
o < sign,([OBSERVE, e, r,v])

send message [OBSERVE, 7, v, g] to py

upon receiving message [REPORT-REQ, ’, R] from py s.t. 7’ = ry A —sentreport A ~completedround do
if verify that R is sorted with entries from 2 f + 1 distinct oracles
A verify that all signatures in R are valid then
if should-report(R) then
R’ + acompressed list of the form [(w, k) ...] from R = [(w, k,0) .. ]

T < sign,([REPORT, e, s, R']) // validate the report
sentreport <— TRUE
send message [REPORT, 7 ¢, R', 7] to p, // the round continues

else
complete-round()

upon receiving message [FINAL, r’, O] from py s.t. v’ = r; A sentecho = L do
if verify-attested-report(O) then
sentecho < O
send message [FINAL-ECHO, r, O] to all p; € P

upon receiving a message [FINAL-ECHO, 1, O] from p; s.t. ' = ry A —receivedecho[j] A ~completedround do
if verify-attested-report(O) then
receivedecho[j] < TRUE
if sentecho = L then
sentecho < O
send message [FINAL-ECHO, 7, O] to all p; € P

upon |{p; € P | receivedecho[j] = TRUE}| > f A —completedround do
invoke transmit(sentecho) // see transmission protocol in Alg. 5]
complete-round()
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Algorithm 3 Report generation follower protocol, helper functions, instance (e, ¢) (executed by every p;)
function should-report(R)

/I Co = (Ce, C,.,Cr,C;,Cyg) is the most recent report committed by C', as known to p;

/I let t denote the time when C' committed Co

v <— median(CR)

v' < median(R)

return (C.,C,) = (0,0) V (now — tc > A¢) V (‘”m’/l > a) // now denotes the current local time at p;
function complete-round() /I terminates the round in two cases ...
completedround <— TRUE /I (1) when no transmit is needed and (2) when transmit has been invoked
invoke event progress // see pacemaker protocol in Alg.|l} indicates leader is performing correctly

// the round ends and p; waits until p, initiates the next round

function verify-attested-report(O) /1 verify that more than f signatures attest report O
(R, J,T)+ O
fork=1,...,f+1do
if —wverify ;) ([REPORT, e, 74, R, T'[k]) then
return FALSE
return TRUE

11



Algorithm 4 Report generation leader protocol instance (e, ¢) (executed by py)

state
r¢ < 0: current round number within the epoch
observe < [L]™: signed observations received in OBSERVE messages
report < [ L]™: attested reports received in REPORT messages
timer Tioung With timeout duration Aqyng, initially stopped
timer Tyace With timeout duration Ay, initially stopped
phase < L : denotes phase within round in {OBSERVE, GRACE, REPORT, FINAL }

upon event startepoch(e, /) do
start-round ()

upon timeout from Tioyng do
start-round ()

function start-round()
re 1o+ 1 /l leader protocol moves to next round
observe « [L]"; report < [L]"
send message [OBSERVE-REQ, r¢] to all p; € P
start timer T}ound
phase < OBSERVE

upon receiving message [OBSERVE, 7, w, o] from p; s.t. v’ =y Ai = £ A observe[j] = L A phase € {OBSERVE, GRACE} do
if verify,;([OBSERVE, e, ¢, w], o) then
observe[j] + (w, o)

upon |{p; € Plobserve[j| # L}| = 2f + 1 A phase = OBSERVE do
start timer Trace /I grace period for slow oracles
phase < GRACE

upon event timeout from Typce A phase = GRACE do
assemble report R < sorted((w, k, o) for k, (w, o) in enumerate(observe))
send message [REPORT-REQ, r¢, R] to all p; € P
phase < REPORT

upon receiving message [REPORT, ', R, 7] from p; s.t. 7’ = 1y A i = £ A report[j] = L A phase = REPORT do
if verify; ([REPORT, e, 7y, R], 7) then
report[j] < (R, T)

upon exists R s.t. |{p; € P|report[j]| = (R,-)}| > f A phase = REPORT do

k<1

for j € {1,...,n} s.t. reportj] = (R, T) do // collect the attestation of the final report
Jk]  §;Tk] < 7
E+—k+1

O + [e,rg, R, J, T

send message [FINAL, 7, O] toall p; € P

phase < FINAL
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To start the dissemination, p, sends a FINAL message containing the attested report to all nodes. Once a
node receives such a message with a properly attested report, it sends the report again to all nodes in a FINAL-
ECHO message. Alternatively, when a node receives first a FINAL-ECHO message with a properly attested
report and has not yet echoed one, then the node sends a FINAL-ECHO message with this report as well. Finally,
when a node has obtained more than f valid attested reports, it invokes the transmission protocol through a
transmit event and passes one of the attested reports to Algorithm [5] (Recall here that attested reports are not
necessarily unique, as an incorrect leader could send different nodes attestations from different size- f subsets
of the follower attestations it receives, or an incorrect follower could re-order the attestations it receives from
the leader.) Notice that the amplification of FINAL-ECHO messages ensures that the transmission protocol is
either started by all correct oracles or by none, but not necessarily with the same attested report.

The round may fail due to network delays or when the leader does not behave correctly. For instance,
the leader may not gather enough signatures on the report in time or may fail to send some messages. The
report generation protocol instance may then never produce an attested report or cause that only some of the
oracles invoke the transmission protocol. Such liveness violations are caught by the calling pacemaker protocol,
however, because no progress events are emitted.

The protocol prevents that a leader runs for more than ry,x rounds, where 7y, 1s a global parameter. This
is to prevent a malicious leader from driving the protocol as quickly as possible and causing a denial-of-service
attack, for instance through oracles exhausting their computational or network capacity, or by making oracles
hit API limits. In particular, when the leader attempts to start any round numbered higher than ry,x, then
every oracle exits the report generation protocol after receiving a corresponding OBSERVE-REQ message as a
follower. The oracle signals this to the pacemaker protocol with a changeleader event and halts any further
processing in this instance.

The function should-report determines whether the oracle should validate the current report and has a dual
purpose. First, it prevents coalitions of up to f malicious oracles from spamming C' with transmissions in order
to quickly extract reward payouts for useless reports. Second, it enables running rounds in quick succession
without spending lots of gas on spurious updates that don’t materially change the median exposed by C.

Function should-report assesses if the oracle should participate in producing the report. As mentioned
before, this is the case when the value to be reported has changed significantly with respect to value Cg
committed by C' most recently, enough time has passed since then, or when the report generator has just been
initialized for the first time ever and the committed epoch-round tuple is still the initial value (Ce, C;.) = (0,0).

Since the function refers to the current time, it implicitly assumes clock synchronization. However, the
duration A is a different order of magnitude than expected clock skew, so any split view on whether a report
should be transmitted should resolve within an epoch or two. Note that asynchronous periods may also result in
a split view among the correct oracles on whether the leader makes enough progress in the pacemaker protocol
(Algorithm [I)), i.e., when f + 1 oracles have faster clocks than the rest of the group including the leader.

A schematic execution of the report generation protocol is illustrated in Figure

5.4 Transmission

Algorithm [5]is responsible for transmitting a final report O produced by Algorithm 2H4]to the smart contract C
on the Ethereum blockchain. This means, it creates a suitable Ethereum transaction containing O. Under ideal
conditions, the report generation algorithm starts the transmission protocol at roughly the same time across all
oracles.

To avoid redundant transmissions and reduce gas costs, the algorithm first filters incoming reports. In
particular, we aim to protect against a scenario where many rounds complete in quick succession and produce
lots of similar reports. In such a case, we only want to transmit the first such report, and discard the following
ones. To do so, we keep track of the latest incoming report L and only allow a report O through the filter if (1)
C has seen a report at least as recent as L, i.e., there is no backlog of reports, or (2) if O’s median observation
value deviates sufficiently from the median in L.

After a report passes that filter, the algorithm proceeds in stages and is globally parameterized by a stage
duration Agee and a schedule S = (815, 8| S‘). In stage 4, there are s; distinct and randomly selected oracles
that attempt to transmit the report to C'. Each oracle is chosen at most once as a transmitter. Furthermore an
oracle will transmit O only if the oracle has not yet observed the report on the blockchain, as committed by C.
Stage i starts after duration (7 — 1)Agge has elapsed. Writing to = 0 and t;, = Z§:1 s, this means that
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msc Report generation for n =5 and f = 1, epoch e, round r, happy path

Leader py |FOHower p1| |Follower p2| |F0110wer p3| |Follower p4| |Follower s
upon startepoch(e, £)
(%)
Tm‘“‘dX [OBSERVE-REQ, 7] broadcast to fall followers N
[ Each follower p; independently makes observation v; and signs it with o;
[OBSERVE, 1, v1, 01]
verify o1, store (o1, v1) |
[OBSERVH, 1, v2, 03]
[OBSERVE, 1, v3, 03]
| verify o;, store (o, v;)
Tgrace}
[OBSERVE]r, v4, 04], not needqd for safety, but still included
| verify o, store (o3, vs)
Tgracek
[@BSERVE, 1, v5, 05] npt needed, arrives tpo late, not include
[REPORT-REQ, 1|, R] broadcast to al| followers, where rdport R contains soxted list of v;, o;
[ Each follower p; independently verifies, compresses, and signs sorted report with 7;
_|REPORT, 7, R, 1]
_ [REPORT|, 7, R, 7]
[REPORT, 1, R, 73]
verify 7;, store 7;;
assemble final report O
[FINAL, r{O] broadcast to all|followers N
[ Each follower p; broadcasts [FINAL-ECHO, 7, O] to all other followers; for example, p; receives:
[FINAL-ECHO, 1, O]
[FINAL-ECHO, 1, O]
verify each report O;
invoke transmit(O)
[FINAL-ECHO, 1}, O] not needed
[FINAL-ECHO, 7, O] not ngeded
_ [FINAL-ECHO, 1}, O] not needed
Troundk
r<r+1;
Go to (x)
* | | | | |

T4

Figure 1. Sample execution and message trace of report generation with Algorithms




Algorithm 5 Transmission protocol (oracle p;).

state
timer Tiransmit, 1nitially stopped: delays until next report should be transmitted
reports < heap-new(): priority queue of time-report pairs (¢, O), keyed on ascending time values
L= (L, L,,Lg,Ly,Lg) < L: latest report accepted for transmission
Co = (C¢, Cy,Cr,Cy,Cs): most recent report committed by C', as known to p;

upon event transmit(O) do
(Oea Orv ORa ) ) «~ 0

if (O, 0,) < (C¢, C,) then /I O is outdated compared to Co
return

ifL # L A(OO,) < (L, L,) then /1 O is outdated compared to L
return

if [ = | v lmedatOn) “nedinllnll > o v (L, L,) < (Ce, C,) then
L+ O
Atransmit < transmit-delay(i, O, O,.)
insert (now + Aansmit, O) into reports // recall reports contains (¢, O) pairs sorted by ascending ¢

(t, O) = heap-peek(reports)
restart Tipansmic With delay (t — now)

upon event timeout from Ty ansmic A0
if |reports| = 0 then
return
(-, O) < heap-pop(reports)
(Oc, Opyry-y) < O
if (0., 0,) > (C,, C;) then
send Ethereum transaction with O to C'
if |reports| > 0 then
(t,-) < heap-peek(reports)
restart Tiransmic With delay (t — now)

function transmit-delay(i, e, r)
m < Gyle|r) // derive pseudo-random permutation over {1,...,n }

k <« k such that Zf;ll sj <m(i) < Zle 85 // assuming so = 0
return k - Agoc
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in stage k, the oracles on position t;_1 + 1,...,fx_1 + s; of m are supposed to transmit. By requiring that
> ;s > [f, we can ensure that there is at least one correct node that will transmit to C. The timeouts are such
that reports to be transmitted from multiple rounds may overlap substantially, i.e., a report form the subsequent
round may arrive before many oracles had a chance to transmit. A realistic setting is 7 - Aggage > Around (s€€
Section [6)).

For the transmission protocol to achieve its goal, we require that a correct oracle will always be able to
get a transaction included in the Ethereum blockchain within Agge time. This assumes that (1) miners are
actively mining the Ethereum chain and including transactions from their mempools according to the usual
gas price auction dynamics and that (2) the oracle appropriately sets (or escalates) its gas price bid to have the
transmission transaction included in the blockchain. These assumptions may be violated in practice, e.g., during
times of particularly egregious congestions of the Ethereum chain. In such cases, transmission transactions will
still be included eventually, but later and at a higher total gas cost than modeled here.

The selection of transmitting oracles occurs with a pseudo-random function G, : {0,1}* — Sym(n),
where x is a secret key known only to oracles and Sym(n) is the set of permutations of {1,...,n}. Given
the (implicit) protocol identifier, epoch, and round, G, deterministically derives a permutation of the node set.
As with the leader function described in Section the secret = should not be known to the oracles before
they are committed to their indexing {p1, ..., pn}, so that a malicious coalition cannot arrange themselves to
dominate the early parts of the schedule.

Mechanism design. Faulty oracles may misbehave and ignore the global transmission schedule given by the
algorithm, e.g., because their clock is malfunctioning or because they wish to earn the higher payment afforded
to the first transmitting oracle. (Oracles that observe, but do not transmit, are paid less.)

The defense against this behavior is purely economical. The owner should monitor C and check that oracles
follow the transmission schedule. We expect the owner to remove any oracles that consistently misbehave (i.e.,
submit too late or too early) from the protocol, preventing them from earning future reporting and transmission
fees. Since such an attack threatens neither key safety nor liveness properties, and we expect the ratio between
earnings from ongoing protocol participation to earnings from such an attack (prior to discovery) to be high,
this defense should suffice in practice.

6 Implementation concerns

Notice that all protocols are functional under partial synchrony only to the extent that the timing characteristics
of the network after GST are reflected by the chosen constants. Since they are fixed and not determined
adaptively with respect to an unknown A, the protocol does not formally adhere to partial synchrony.

Example values for constants. We provide rough estimates of how we’re planning to set many of the con-
stants used in the protocol description for deployments targeting Ethereum.

A is the upper bound on communication latency during periods of synchrony. The choice of all other time
constants is constrained by this. Estimate: 1 second

Aprogress 18 the duration in which a leader must achieve progress or be replaced. Estimate: 30 seconds
Avesend 18 the interval at which nodes resend NEWEPOCH messages. Estimate: 15 seconds
Around 18 the duration after which a new round is started. Estimate: 15 seconds

Agrace 1s the duration of the grace period during which delayed oracles can still submit observations. Estimate:
2 seconds

A¢ limits how often updates are transmitted to the contract as long as the median isn’t changing by more then
«. Estimate: 5 minutes — 24 hours

« allows larger changes of the median to be reported immediately, bypassing A¢. Estimate: 0.2%-5% (de-
pending on the underlying data feed)
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Astage is used to stagger stages of the transmission protocol. Multiple Ethereum blocks must be mineable in
this period. Estimate: 30 seconds — 60 seconds

Tmax 1S the maximum number of rounds in an epoch. Estimate: 3 — 10

n is the number of oracles. In our initial implementation, we assume n < 31.

Domain separators. All hash and signature computations have to use proper domain separators, which we
omit from the above protocol description for notational clarity. Domain separators include:

¢ Protocol identifier

Address of C'
* A counter of protocol instances (maintained by C')
* Chain identifier (e.g. for Ethereum mainnet)

 Set of oracles P

7 Future work

In the current protocol, Aoung controls the frequency at which a correct leader should create reports. It might
be desirable to produce more frequent reports upon observing significant changes of the reported data stream,
but will require careful design because it potentially opens us to price-manipulation attacks, and since we’re
considering A;oung values much smaller than the average block interval, it’s not clear how these reports would
be represented on-chain.

We plan to adopt some form of aggregate or threshold signature scheme instead of the multisignatures used
so far. The constant (in n) gas costs of signature verification would enable us to support larger oracle sets
without major increases in on-chain cost.

As another extension for a later version, a new oracle list signed by a quorum of oracles from the current
set could be used to change the off-chain oracle set without requiring the owner to intervene.

Finally, we plan to extend the protocol to support generalized aggregation functions rather than just the
median, enabling advanced use cases such as Fair Sequencing Services [JBT20)].

8 Analysis

This section contains a detailed analysis of the algorithms introduced earlier, consisting of definitions and
semi-formal arguments of correctness.
8.1 Pacemaker

The pacemaker protocol (Section[5.2)) runs continuously. It interacts with its environment by consuming (input)
events of type progress and changeleader, by initializing and aborting report generation protocol instances, each
identified by a unique (e, ¢) pair, and by emitting startepoch(e, ¢) (output) events at the leader.

initialize a report generation instance (e, /): Indicates that the oracle moves to epoch e and runs the cor-
responding report generation instance with oracle ¢ as leader. At most one report generation protocol
instance is initialized for a particular (e, ¢).

abort a report generation instance (e, £): Stops the running protocol instance identified by epoch e and leader /.

startepoch(e, ¢): Indicates at oracle p, that the oracle should start epoch e as leader. This occurs only after the
report generation instance (e, ) has been initialized by py.

progress: Originates from the current report generation protocol instance and indicates that the leader has
made adequate progress, according to the oracle’s local view and clock.
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changeleader: Originates also from the current report generation protocol instance and indicates that this
instance has reached its maximal number of rounds; therefore, the oracle should advance to the next
epoch with a new leader.

Furthermore, the pacemaker protocol internally uses a timer Tjogress With duration Apogress that captures
the assumption that every report generation protocol instance should repeatedly emit progress or changeleader
events that are no more than Apoeress apart. Since the report generation protocol is driven by a leader oracle py,
we say that the oracle times out on py when no progress or changeleader event occurs between two successive
timeouts from 7 progress-

In the following, we discuss liveness conditions only for stable periods (i.e., after GST).

Definition 1. A pacemaker protocol has the following properties:

Eventual succession: [f more than f correct oracles have initialized some epoch e with leader p; during a
period of network synchrony after GST and subsequently either time out on py or receive a changeleader
event, then all correct oracles will advance to epoch e + 1 after at most 2 pesena + 2 + 4e.

Putsch resistance: A correct oracle does not abort the current epoch and initialize a new epoch unless at least
one correct oracle has timed out on the leader of the current epoch or the report generation protocol has
indicated to change the leader.

Eventual agreement: Eventually, every correct oracle has initialized the same epoch e with leader p; and
does not abort it unless some correct oracle times out or indicates a leader change.

We now show that Algorithm [I]implements a pacemaker protocol. We proceed by formulating and proving
a number of lemmas. The first one characterizes how the correct oracles progress to subsequent epochs. Notice
this holds also for asynchronous periods.

Lemma 1. Suppose the maximal epoch that has been initialized by any correct oracle is € and let ne denote
the maximal value of variable ne at any correct oracle. Then,

(a) if no correct oracle times out and epoch € does not indicate a leader change at any correct oracle, then no
correct oracle broadcasts NEWEPOCH, €'] with ¢/ > ne;

(b) e <ne<e+l

Proof. Recall the role of variable ne in Algorithm [I} which records the highest epoch for which the oracle has
ever broadcast a NEWEPOCH message, and that ne is at least the current epoch value e for correct oracles.

To prove claim (a), note that an oracle with current epoch e can only advance ne to € + 1 independently,
i.e., without receiving any NEWEPOCH messages, through the “leader is too slow, or tenure is over” handler.
However, this is ruled out by the assumption of the lemma.

Hence, the only way for a correct node to increase ne beyond 7e is via the “NEWEPOCH amplification rule.”
This triggers when the oracle receives [NEWEPOCH, €'] messages with ¢’ > 7ze from more than f oracles.

We now establish an infinite descent to obtain a contradiction. Suppose that a correct oracle has current
epoch € and its “NEWEPOCH amplification rule” is triggered, so that ne becomes greater than ne. Since there
are at most f faulty oracles, but more than f [NEWEPOCH, ¢’] messages with ¢/ > 7e have been received, at
least one other correct oracle has sent [NEWEPOCH, €’]. Hence this oracle’s ne variable is also greater than
ne. This leads us back to the supposition at the start of this paragraph, with a different correct oracle. We
continue this argument by induction and observe that ne > ne implies there are infinitely many distinct, correct
oracles. However, the set of oracles is finite and ne < ne for all of them. Therefore, all correct oracles will
correspondingly broadcast [NEWEPOCH, €] with ¢’ < 7e.

To establish claim (b), suppose towards a contradiction that ne > e 4- 2. It follows from the above argument
that at least one correct oracle has sent a NEWEPOCH message containing epoch € + 2 or higher, through the
“NEWEPOCH amplification rule.” However, this oracle has set ne to e + 1 from its variable e according to the
algorithm. But € is the maximum epoch value e of any correct oracle and thereforee+1 =ne =ne > e+2 >
e + 2, a contradiction. It follows that e is at most € + 1. |
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The partially synchronous system model postulates a global stabilization time (GST), after which no more
crashes occur, clocks are synchronized, and every message between two correct oracles is delivered within A.
Suppose that the local processing time of any correct oracle after receiving messages is at most ; this includes
receiving multiple messages concurrently, i.e., € is an upper bound on the processing latency of all messages
and local events between receiving and sending messages over the network. This value is negligible compared
to the other durations under consideration. The next lemma establishes a condition for reaching agreement after
GST, in the sense that all correct oracles initialize the same epoch and remain in this epoch long enough.

Lemma 2 (Agreement). Consider an epoch e such that no correct oracle has initialized any higher epoch
than e. If some correct oracle has initialized e before GST, then define a point in time T to be GST; otherwise,
let T be the time when the first correct oracle initializes e. Let ne denote the maximal value of variable ne at
any correct oracle at time .

If e = me, no correct oracle times out, and epoch e does not indicate a leader change at any correct oracle
during at least Aggree = 20 esena + 2 + 4€ after T, then all correct oracles have initialized epoch e at time
T + Aygree and do not abort it afterwards unless epoch e indicates a leader change.

Proof. Notice that the local epochs and the highest epochs (stored in e and ne, respectively) of the correct
oracles may differ because of crashes. In particular, correct oracles that have recovered may have missed
arbitrarily many messages.

Let p; be the oracle that has initialized epoch e according to the assumption. It has received more than 2 f
NEWEPOCH messages containing an epoch value of at least e. More than f of those messages were sent by
correct oracles. Even if these nodes had crashed, they meanwhile recovered, restored their e and ne variables
to their highest values before the crash, and operate correctly from now on. Thus, more than f correct nodes
retransmit NEWEPOCH messages with an epoch value of at least e at most Ayegeng + € after 7.

Thus, after at most Aresend + A + 2€, every correct oracle has received and processed more than f NEWE-
POCH messages containing an epoch value of at least e. According to the algorithm and the “NEWEPOCH
amplification rule,” since epoch values of at least e are reported more than f times, every correct oracle broad-
casts a NEWEPOCH message containing epoch e or higher after no more than 2Aegeng + A + 3e.

These messages are received by all correct oracles after at most 2A reseng + 2A +4€ = Aggree. Hence, every
correct oracle has received n — f > 2f NEWEPOCH messages with epoch at least e and has initialized epoch e
after Aygree. Lemma [Ka) implies that no oracle initializes a higher epoch afterwards, until epoch e indicates a
leader change. |

Notice that the previous lemma only bounds the time after GST for reaching agreement on a particular
epoch e when e = 7e. If some correct nodes have initialized epoch e at GST and re = e + 1, which is the only
alternative to this condition according to Lemmal[I] it means that that variable ne of at least one correct oracle
is equal to ne. The situation may remain like this for an unbounded period. But once the faulty oracles cause a
correct oracle to initialize epoch 7ze by sending NEWEPOCH messages with parameters at least 7ze, the condition
of the lemma applies again and bounds the time that the correct oracles need for progressing to epoch re. We
can summarize this behavior less precisely in the following lemma.

Lemma 3 (Eventual agreement). There exists a point in time after GST, after which every correct oracle has
initialized the same epoch e and does not abort it unless some correct oracle times out or an indicates a leader
change for epoch e.

Lemma 4 (Eventual Succession). Consider a period of network synchrony after GST. If more than f correct
oracles are in epoch e with leader p, and either time out on py or receive a changeleader event, then all correct
oracles will advance to epoch e + 1 after at most 2/ jegena + 2 + 4e.

Proof. Notice that when a correct oracle times out on p, or receives a changeleader event during epoch e, it
sets ne = e + 1. Thus, the proof of Lemma [2| applies for this situation as well because more than f correct
oracles send NEWEPOCH messages with e 4+ 1. Hence, all correct oracles have initialized epoch e + 1 after at
most 2A esend + 2A + 4e. [ |

Lemma 5 (Putsch resistance). A correct oracle does not abort an epoch e unless at least one correct oracle
has timed out on the leader of epoch e or the report generation protocol has indicated to change the leader.
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Proof. Notice that e in Lemmal(I]is the maximal epoch value that any correct oracle has ever sent in a NEWE-
POCH message. Assume that e is the highest epoch initialized by any correct oracle, hence we have ne = e.
Towards a contradiction, suppose that some correct oracle has aborted epoch e. According to the algorithm,
this means it has received NEWEPOCH messages for some epoch higher than e from more than 2f oracles,
of which some were sent by correct oracles. But by Lemma [[{a) with 7e = e, no correct oracle has sent
a NEWEPOCH message with an epoch higher than e under the assumptions of putsch resistance. The lemma
follows. |

The statements of Lemmas [3H5] imply all properties of a pacemaker protocol. Therefore, the following
result summarizes our analysis.

Theorem 6. Algorithm|[I]|implements a pacemaker protocol.

8.2 Report generation

Recall that the report generation protocol (Section[5.3)) is parameterized by an epoch number e and a leader or-
acle py. The protocol receives a startepoch(e, £) event (only at the leader; the parameters e and ¢ are redundant).
It generates one or more transmit(O) events at all oracles, where O denotes an attested report to be transmitted;
we say that the oracle starts transmission at this point and the report is taken up by the transmission protocol.
Moreover, the report generation protocol at every oracle periodically emits a progress event and thereby signals
that it makes progress to the pacemaker protocol. The report generation protocol may also produce at most one
changeleader event, indicating that the report generation protocol has ended; this occurs after transmitting 7y,
attested reports.

startepoch(e, ¢): Instructs the oracle py to start epoch e as leader.

progress: Indicates that the report generation protocol instance has made progress, in the sense that the
leader py has collected one round of observations from the oracles.

changeleader: Indicates that the report generation protocol terminates because it has performed the maximum
foreseen number of observation collections and possible transmissions.

transmit(O): The report generation protocol has generated an attested report O and starts transmission with O.

Furthermore, every oracle running the protocol has access to a constantly changing observation value v;
we assume this is read into variable v immediately before the code accesses this value. We say that an oracle
observes value v when this occurs. An oracle p; may consult the most recent attested report C'p, which contains
the oracle report C'r committed most recently by C'. Notice that due to Ethereum’s dissemination delays, not
every oracle receives updates to Cp at the same time. In the following, we refer to this Cr as the committed
report that p; knows.

Internally, the leader of the report generation protocol uses two timers, Tround and Trace. They are used to
refine the above properties during synchronous periods. Time Tioynq runs continuously with duration Agyng and
controls the periodic start of a new report generation round. Timer Typ,ce is active during the grace period for
Agrace and controls the extra waiting time for receiving observations into the current report from late oracles.

When an oracle p; receives a report R containing observations from 2f + 1 oracles, the oracle checks
if R should be reported with respect to the committed report Cr and the current time, as specified by func-
tion should-report( R) in Algorithrn In the following, let AT = Agpyee + 6A + 8e.

Definition 2. A report generation protocol satisfies these conditions:

Transmission totality: If at some point in time after GST a correct oracle starts transmission with an attested
report O = (e, r, R, ...) and the report generation protocol instance is not aborted, then every correct
oracle starts transmission with an attested report O' = (e/,v', R, ...) such that (e,r) = (e, r) within at
most 2A + 2e.

Observation integrity: If a correct oracle starts transmission of an attested report with median v, then v is
either the observation of a correct oracle or lies between the observations of two correct oracles.
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Responsiveness: Consider a point in time after GST when the network has synchronized and every correct
oracle knows some committed report Cr and suppose py is correct. If every correct oracle observes a
value that should be reported and the epoch is not aborted, then every correct oracle starts transmission
within at most /A puna + A7

Progress: Suppose py is correct and that the report generation protocol is not aborted. Consider the point
in time after GST, when all correct oracles have initialized the report generation protocol. Then, every
correct oracle indicates that it makes progress or started a transmission once in the interval [p (A ouna +
€), p (Ayouna + €) + A+] forp=1,... 7pa — 1. Furthermore, every correct oracle indicates to change
the leader once in the interval [Tmax (Avound + €)s Tmax (Drouna + €) + AT].

Timely inclusion: Consider a point in time after GST when the network has synchronized and suppose some
correct oracle p; observes a value v that should be reported. If the leader is correct and A+2e < Ngrace,
then the attested report in the next transmission started by p; contains v reported by p;.

Bounded leader tenure: No correct oracle starts transmission in this report generation protocol more than
Tmax fiMes.

The remainder of this section is devoted to a proof that Algorithm [2H4] implements a report generation
protocol.

Lemma 7 (Transmission totality). Consider a point in time after GST and suppose a correct oracle starts
transmission in a round r. Then every correct oracle starts transmission in round r within at most 2 + 2¢ or
the report generation protocol instance is aborted.

Proof. Suppose the correct oracle p; has started transmission in round r and that the report generation instance
is not aborted. Then it has received properly attested reports, as determined by verify-attested-report, from
more than f distinct other oracles. Since the verification function does not depend on local state, every other
correct oracle also recognizes such an attested report as properly attested.

Notice at least one of the oracles that sent a properly attested report to p; is correct, hence, it has sent a
FINAL-ECHO message containing this attested report O to all nodes. At most A + ¢ later, every correct node
therefore has received O or has already received some properly attested report earlier. This means that every
correct node sends a FINAL-ECHO with O in response or has sent some attested report in such a message earlier.
Thus, at the latest after 2A + 2e¢, every correct oracles has received n — f > f FINAL-ECHO messages with
possibly different, but always valid, attested reports and has started to transmit a report. |

Lemma 8 (Observation integrity). The median observation value in an attested report as determined by verity-
attested-report is either the observation of a correct oracle or lies between the observations of two correct
oracles.

Proof. Recall that an attested report R contains a (compressed) list of 2f + 1 observations. Since R has been
attested, there is at least one correct oracle p; that has validated and signed 1. During the report validation
earlier, p; has verified that every observation in 12 has been signed by a distinct oracle.

Since the report contains 2 f + 1 observations, strictly more than half of the values in R represent observa-
tions by correct oracles. Hence, the median value of an attested report is either an observation of a correct oracle
or it is from a faulty oracle but 2 contains a smaller and a larger observation, both from correct oracles. |

Lemma 9 (Responsiveness). Consider a point in time after GST when the network has synchronized and every
correct oracle knows some committed report Cr and suppose py is correct. If every correct oracle observes a
value that should be reported and the epoch is not aborted, then every correct oracle starts transmission within
at most Aound + Dgrace + 6A 4 8e.

Proof. Notice that under the conditions of the lemma, a fresh round is started by the correct leader at most
after A;ound. Every correct oracle sends its observation to py, and py combines these to a report R. According
to Lemma [§8] the median observation value in R is the observation of a correct oracle or lies between the
observations of two correct oracles. Hence, testing if the median value of R should be reported ensures that
when all correct oracles observe values to be reported, then the test succeeds.

For the rest of the argument, follow the algorithm as driven by the correct leader. Then the additional
maximal delays after A;oung until a correct oracle transmits the report are as follows:
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1) €+ A for py to start the round and send the OBSERVE-REQ message until every correct oracle receives it;
2) e+ A for every correct oracle to respond with a OBSERVE message to py;
3) €+ Agrace for the leader to process all OBSERVE-REQ messages and to wait during the grace period;

4) e + A for py to finish the grace period and to send a REPORT-REQ message to all oracles until every correct
oracle receives this;

5) €+ A for every correct oracle to respond with a REPORT message to py;
6) €+ A for py to produce a FINAL message and until every correct oracle receives it;

7) € + A for every correct oracle respond to the FINAL message with a FINAL-ECHO message and until every
correct oracle receives f + 1 of these; and

8) e for every correct node to process the FINAL-ECHO messages and start transmission.

The precondition of the previous lemma can be generalized in the sense that not all correct oracles may
locally know the same report C'r. In particular, each one might know a potentially different committed report
from C, but still such that the report value R in REPORT-REQ should be reported compared to the committed
report. Then the conclusion of the lemma follows as well. Last but not least, recall from the implementation of
should-report( R) that to check whether R should be reported, the time that has elapsed since the latest known
committed report was produced and moment of checking counts as well.

Lemma 10 (Progress). Suppose py is correct and that the report generation protocol is not aborted. Consider
the point in time after GST, when all correct oracles have started the report generation protocol, and let AT =
Agrace + 6A + 8e. Then, every correct oracle has indicated that it makes progress or started a transmission
once in the interval [p (Avoung + €), p (Dvouna + €) + AT for p=1,. .. ryax — 1. Furthermore, every correct
oracle indicates to change the leader once in the interval [Tmay (Arouna + €), Tmax (Drouna + €) + AT].

Proof. The proof of Lemma [ above shows that the duration of a round at each correct oracle is at most
At = Agrace + 6A + 8¢, measured from the time when the leader starts it. Since clocks are synchronized and
messages are not delayed by more than A after GST, py starts round number p with a delay of p (Around + €)
after starting the report generation protocol. According to the protocol and using similar reasoning as in the
proof above, every correct oracle then indicates either progress or a leader change at most A™ after the leader
starts the round. |

Lemma 11 (Timely inclusion). Consider a point in time when the network has synchronized and suppose some
correct oracle p; observes a value v that should be reported. If the leader is correct and A + € < Agpace, then
the attested report in the next transmission started by any correct oracle contains v reported by p;.

Proof. Considering that this property is only guaranteed after GST, the inclusion follows directly from the
implementation of the grace period: The leader waits at least for Agp,ce until it assembles the report R for a
round. This allows correct oracle p; to include its observation in R, which takes up to A + 2¢ for preparing and
sending the OBSERVE message and for processing this by py. |

Lemma 12 (Bounded leader tenure). No correct oracle starts transmission in this report generation protocol
more than r,,, times.

Proof. This property follows directly from the protocol, since every correct oracle p; counts the number of
rounds in a local integer variable r. In particular, p; initializes r to 0 and subsequently verifies that when
an OBSERVE-REQ message arrives and the leader announces a new round, any change to r only increments r.
Furthermore, p; halts the report generation when py attempts to start a round with number greater than rp,x. W

Observe that Lemmas correspond to the definition of a report generation protocol. Therefore, the
following result holds.

Theorem 13. Algorithm[2Hd|implements a report generation protocol.
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8.3 Transmission

There is one single instance of the transmission protocol that uses two events. The protocol is defined with
respect to synchronous time. A transmit(O) event may be invoked on the transmission protocol to receive an
attested report O for transmission. The algorithm performs various checks and if these succeed, it sends a
transaction containing O on the Ethereum network to C'. More formally, we consider two events.

transmit(O): Receives an attested report O for transmission.

send transaction with O: Sends a Ethereum transaction to C with O.

Every oracle p; locally receives a sequence of reports for transmission, where each report is identified by
a unique epoch-round tuple according to the implementation of report generation. When the properties below
refer to an order among reports, this always corresponds to the order given by these epoch-round tuples.

For reports received for transmission, this order is the same as the order of the transmission events, accord-
ing to the properties of the report generation protocol in combination with the pacemaker. However, not every
correct oracle receives the same sequence of reports for transmission.

The transmission protocol internally buffers every report and sends a corresponding transaction only af-
ter a predetermined delay. The protocol also has access to the most recently committed report by C' on the
blockchain, which is denoted by Cp.

Definition 3. A transmission protocol satisfies for each oracle p;:

Liveness: When p; receives a report O for transmission and either the median observation in O differs suffi-
ciently from the observation in the most recently buffered report L or Co is already at least as recent as

L, then p; buffers O.

Furthermore, for every buffered report O, an Ethereum transaction is sent after a predetermined delay,
unless Co has meanwhile become at least as recent as O.

Safety: No Ethereum transaction is sent with a report O unless O has been received for transmission.
Theorem 14. Algorithm|5|constitutes a transmission protocol.

Proof. The liveness and the safety properties follow directly from the implementation. |

Latency and cost. We now investigate the delay before the reports received for transmission are sent in
transactions to C' and the total cost incurred by the transactions executed by C' on the blockchain. Here we
deviate from the model of the adaptive adversary, and instead we assume the adversary chooses which oracles
to compromise before the secret key x for the pseudo-random delay function becomes known to the oracles and
the adversary.

Recall that Algorithm [5] operates in stages according to a schedule and buffers reports for multiples of a
predetermined time Ag,ge. For convenience, we define 51, j = ZLI Si.

If none of the f faulty oracles ever sends a transaction, we have

P [transmission takes longer than k - Aggge] =

fln—s1.x)! if s <
P [no successful transmission in stages 1..k| = (f=s1.5)tn! Lok o f
0 otherwise

by uniformly sampling from the oracle set without replacement.

Let ¢ be the cost of the first transaction sent to C' on Ethereum and let ¢’ be the cost of subsequent transac-
tions that fail. In expectation, the cost of a given schedule is
S|
E [transmission cost] = (¢ — ¢) + Z P [no successful transmission in stages 1..i — 1] s;c’.
i=1
A simulation tool has been developed to illustrate the sending of transactions according to a schedule.
The file transmission_probability.py contains a Python program for calculating latency and cost of

different schedules.
For example, for S = (2,2,7,20),n = 31, f = 10, the output is:
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Have 31 replicas of which 10 are faulty

Reach
Reach
Reach
Reach

stage
stage
stage
stage

w N = O

Expected cost

with p=1.0
with p=0.09677
with p=0.006674
with p=0.0

is 486818 gas
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